domingo, 21 de marzo de 2010

fijacion del nitrogeno
La fijación del nitrógeno es un proceso en el cual el N2 se convierte en amonio. Éste es esencial porque es la única manera en la que los organismos pueden obtener nitrógeno directamente de la atmósfera. Algunas bacterias, por ejemplo las del género Rhizobium, son los únicos organismos que fijan el nitrógeno a través de procesos metabólicos. Esta simbiosis ocurre de manera bien conocida, en la familia de las legumbres (por ejemplo, fríjoles, arvejas y tréboles). En esta relación, la bacteria que fija el nitrógeno habita los nódulos de las raíces de las legumbres (Figura 2) y reciben carbohidratos y un ambiente favorable de su planta anfitriona a cambio de parte del nitrógeno que ellas fijan. También hay bacterias que fijan el nitrógeno que existe, sin plantas anfitrionas. Éstas son conocidas como fijadores de nitrógeno libre sin límites. En ambientes acuáticos, las algas azules verdosas (en realidad una bacteria llamada cianobacterias) es una importante fijadora de nitrógeno libre sin límites.
Además del nitrógeno que fija la bacteria, eventos de alta energía natural, tales como los relámpagos, fuegos forestales, y hasta flujos de lava, pueden causar la fijación de pequeñas, pero significativas cantidades de nitrógeno. (Figura 3). La alta energía de estos fenómenos naturales puede romper los enlaces triples de las moléculas de N2, haciendo alcanzables átomos individuales de N para la transformación química.
En el curso del último siglo, los humanos se han convertido en fuentes fijas de nitrógeno, tan importantes como todas las fuentes naturales de nitrógeno combinadas: quemando combustible de fósiles, usando fertilizantes nitrogenados sintéticos y cultivando legumbres que fijan nitrógeno. A través de estas actividades, los humanos han duplicado la cantidad de nitrógeno fijada que se dispersa en la biosfera cada año (Figura 3). En seguida se discute las consecuencias de este proceso.


La toma del Nitrógeno
NH4+ N Orgánico
El amonio producido por el nitrógeno que fija la bacteria es usualmente incorporado rápidamente en la proteína y otros compuestos de nitrógeno orgánico, ya sea por la planta anfitriona, por la misma bacteria, o por otro organismo del suelo. Cuando los organismos más cercanos a lo alto de la cadena alimenticia (como nosotros!) comen, usan el nitrógeno que ha sido inicialmente fijado por el nitrógeno que fija la bacteria.
La Mineralización del Nitrógeno
El N Orgánico NH4+
Después de que el nitrógeno se incorpora en la materia orgánica, frecuentemente se vuelve a convertir en nitrógeno inorgánico a través de un proceso llamado mineralización del nitrógeno, también conocido como desintegración. Cuando los organismos mueren, las materias de descomposición (como la bacteria y los hongos) consumen la materia orgánica y llevan al proceso de descomposición. Durante este proceso, una cantidad significativa del nitrógeno contenido dentro del organismo muerto se convierte en amonio. Una vez que el nitrógeno está en forma de amonio, está también disponible para ser usado por las plantas o para transformaciones posteriores en nitrato (NO3-) a través del proceso llamado nitrificación.
Nitrificación
NH4+ NO3-
Parte del amonio producido por la descomposición se convierte en nitrato a través de un proceso llamado nitrificación. Las bacterias que llevan a cabo esta reacción obtienen energía de sí misma. La nitrificación requiere la presencia del oxígeno. Por consiguiente, la nitrificación puede suceder solamente en ambientes ricos de oxígeno, como las aguas que circulan o que fluyen y las capas de la superficie de los suelos y sedimentos. El proceso de nitrificación tiene algunas importantes consecuencias. Los iones de amonio tienen carga positiva y por consiguiente se pegan a partículas y materias orgánicas del suelo que tienen carga negativa. La carga positiva previene que el nitrógeno de amonio sea barrido (o lixiviado) del suelo por las lluvias. Por otro lado, el ión de nitrato con carga negativa no se mantiene en las partículas del suelo y puede ser barrido del perfil de suelo. Esto lleva a una disminución de la fertilidad del suelo y a un enriquecimiento de nitrato de las aguas corrientes de la superficie y del subsuelo.
La De nitrificación
NO3- N2+ N2O
A través de la de nitrificación, las formas oxidadas de nitrógeno como el nitrato y el nitrito (NO2-) se convierten en di nitrógeno (N2) y, en menor medida, en gas óxido nitroso. La de nitrificación es un proceso anaeróbico llevado a cabo por la bacteria que desnitrifica, que convierte el nitrato en di nitrógeno en la siguiente secuencia:
NO3- NO2- NO N2O N2.
El óxido nítrico y el óxido nitroso son gases importantes para el ambiente. El óxido nítrico (NO) contribuye a formar smog, y el óxido nitroso (N2O) es un gas de invernadero importante, por lo que contribuye a los cambios globales climatológicos.
Una vez que se convierte en di nitrógeno, el nitrógeno tiene pocas posibilidades de reconvertirse en una forma biológica disponible, ya que es un gas y se pierde rápidamente en la atmósfera. La de nitrificación es la única trasformación del nitrógeno que remueve el nitrógeno del ecosistema (que es esencialmente irreversible), y aproximadamente balancea la cantidad de nitrógeno fijado por los fijadores de nitrógeno descritos con anterioridad.



los saluda su compañera Adriana perez lara

viernes, 12 de marzo de 2010

ciclo del nitrogeno
El ciclo del nitrógeno es cada uno de los procesos biológicos y abióticos en que se basa el suministro de este elemento a los seres vivos. Es uno de los ciclos biogeoquímicos importantes en que se basa el equilibrio dinámico de composición de la biosfera.
El nitrógeno es un elemento. Está presente en seres vivos como, plantas y animales. También es una parte importante para no vivos como el aire y la tierra que pisamos. Los átomos de nitrógeno no permanecen en un lugar. Se desplazan lentamente entre seres vivos o muertos, por el aire, la tierra y el agua. A este movimiento se le conoce como ciclo del nitrógeno.
La mayoría del nitrógeno que encontramos en la Tierra se encuentra en la atmósfera. Aproximadamente 80% de las moléculas en la atmósfera de la Tierra está compuesta de dos átomos de nitrógeno unidos entre sí (N2). Todas las plantas y animales necesitan nitrógeno para elaborar aminoácidos, proteínas y DNA; pero el nitrógeno en la atmósfera no se encuentra en forma que lo puedan usar. Los seres vivos pueden hacer uso de las moléculas de nitrógeno en la atmósfera cuando estas son separadas por rayos o fuegos, por cierto tipo de bacterias, o por bacterias asociadas con plantas de frijoles.
La mayoría de las plantas obtienen el oxígeno que necesitan para crecer de los suelos o del agua donde viven. Los animales obtienen el nitrógeno que necesitan alimentándose de plantas u animales que contienen nitrógeno. Cuando los organismos mueren, sus cuerpos se descomponen y hacen llegar nitrógeno hacia los suelos o tierra, o hacia el agua de los océanos. Las bacterias alteran el nitrógeno para que adquiera una forma que las plantas pueden usar. Otros tipos de bacterias pueden cambiar al nitrógeno y lo disuelven en vías acuátivas en forma tal que les permite regresar a la atmósfera.
Ciertas acciones de los humanos están causando cambios en el ciclo del nitrógeno y en la cantidad de nitrógeno que es almacenado en la tierra, agua, aire y organismos. El uso de fertilizantes ricos en nitrógeno puede agregar demasiado nitrógeno a vías acuátivas cercanas, a medida que los fertilizantes caen en corrientes y pozos. Los restos asociados con la ganadería también agrega gran cantidad de nitrógeno a la tierra y al agua. Los crecientes niveles de nitrato hacen que las plantas crezcan muy rapido hasta que agotan los suminitros y mueren. El número de animnales que comen plantas aumentará cuando aumente el suministro de plantas y se quedan sin alimento cuando las plantas mueren.

saludos su compañera deysi mtnez.

domingo, 7 de marzo de 2010

CICLOS ASTRONÓMICOS.

Ciclos Astronómicos
Todo el planeta tierra toma parte en los ciclos astronómicos. La noche y el día, los cambios de la luna y las estaciones del año son manifestaciones de estos ciclos. El hombre mide el tiempo con base en los períodos de algunos movimientos:
• Día: el período de tiempo en que la tierra realiza una rotación completa sobre su eje.
Mes: el período de tiempo en que la luna gira alrededor de la tierra (mes lunar).
• Año: el período de tiempo en que la tierra gira alrededor del sol.


Saludos, Adriana Pérez.

CICLO ASTRONOMICO.

La extinción y aparición de nuevas especies de pequeños mamíferos hace millones de años era determinada por el ciclo astronómico de la Tierra, un descubrimiento que publica la revista 'Nature' fruto del trabajo de ocho investigadores españoles, franceses y holandeses.

Uno de ellos, el paleontólogo del Museo Nacional de Ciencias Naturales Pablo Peláez-Campomanes, explicó que han descubierto que la extinción de unas especies y la aparición de otras nuevas seguían ciclos coincidentes con los de la órbita terrestre y la inclinación de su eje, tras el análisis de fósiles de roedores pertenecientes al Mioceno y el Plioceno (hace aproximadamente entre 23 y un millón de años).

"Este hallazgo refuerza la teoría de que la especiación estaba modulada por el clima", ya que los cambios en la órbita terrestre y su inclinación ocasionaban fenómenos climáticos como heladas más largas y mayor diferencia entre estaciones que podían determinar la supervivencia de vegetales y animales, indicó Peláez-Campomanes.

Probablemente, el comportamiento de las especies de grandes mamíferos, y sobre todo de los reptiles y los anfibios, era muy similar, pues estaban muy sujetos a los cambios del clima, añadió el experto.

Las diferentes especies de roedores aparecían y desaparecían en dos ciclos, uno cada 2,4 millones de años y otro cada millón de años, según los datos obtenidos por el equipo a partir del análisis de unos 80.000 registros provenientes de cuencas fluviales de Madrid y Aragón.

La importancia del estudio reside, según el paleontólogo español, en que esos periodos de especiación coinciden con los ciclos de la órbita terrestre en torno al Sol y la inclinación del eje de la Tierra, de 2,37 y 0,97 millones de años, respectivamente.

Trabajos como éste son "fundamentales para la elaboración de modelos climáticos basados en el registro geológico", explicó Peláez-Campomanes, quien añadió que es la primera vez que se encuentran coincidencias entre los ciclos astronómicos de larga duración y la fauna de medios continentales.

Los resultados del trabajo se han extraído de una base de muestras fósiles de dentición que abarca 22 millones de años y reúne piezas recogidas en 200 yacimientos.

Imagen del yacimiento de Cascante, en Teruel. (Foto: Nature)

Se despide tu amigo y compañero Edwin Hernandez Guevara nos vemos hasta la proxima informacion espero y mi informacion este completa soy de 4D.

martes, 2 de marzo de 2010

La alteración humana del ciclo del N y sus consecuencias ambientales

A principios del siglo 20, un científico alemán llamado Fritz Haber descubrió como acortar el ciclo del nitrógeno fijando químicamente el nitrógeno a altas temperaturas y presiones, creando así fertilizantes que podían ser añadidos directamente al suelo. Esta tecnología se extendió rápidamente durante el último siglo. Junto al advenimiento de nuevas variedades de cultivo, el uso de fertilizantes de nitrógeno sintético ha traído un enorme crecimiento en la productividad agrícola. Esta productividad agrícola nos ha ayudado a alimentar a una población mundial en rápido crecimiento, pero el aumento de la fijación del nitrógeno también ha traído algunas consecuencias negativas. Aunque las consecuencias no sean tan obvias como el aumento de las temperaturas globales o el agujero de la capa de ozono, son muy serias y potencialmente dañinas para los humanos y otros organismos.

No todos los fertilizantes de nitrógeno aplicados a los campos de la agricultura se mantienen para alimentar los cultivos. Algunos son barridos de los campos de agricultura por la lluvia o el agua de irrigación, y son lixiviados en la superficie o en el agua del suelo y pueden acumularse. En el agua del suelo que se usa como fuente de agua potable, el nitrógeno excesivo puede provocar cáncer en los humanos y dificultades respiratorias en los niños. La U.S. Enviro mental Protección Agencia (Agencia de Protección Ambiental de los Estados Unidos) ha establecido un estándar de nitrógeno para el agua potable que es de 10 mg por litro de nitrato-N. Desafortunadamente, muchos sistemas (particularmente en las áreas de agricultura) ya exceden estos niveles. En comparación, los niveles de nitrato en las aguas que no han sido alteradas por la actividad humana y rara vez son mayores de 1 mg/L. En las aguas de la superficie, el nitrógeno añadido puede provocar un enriquecimiento excesivo de nutrientes, particularmente en las aguas de la costa que reciben afluencia de los ríos polucionados. A este enriquecimiento excesivo de nutrientes, también llamado eutrofización, se lo acusa del aumento de la frecuencia de eventos que matan a los peces de la costa, del aumento de la frecuencia del florecimiento de algas dañinas y de cambios en las especies dentro del ecosistema de la costa.

El nitrógeno reactivo (como el NO3- and NH4+) que se encuentra en el agua y suelos de la superficie, también puede ingresar en la atmósfera como el componente del smog óxido nítrico (NO) y el gas de invernadero óxido nitroso (N2O). Eventualmente, este nitrógeno atmosférico puede ser soplado en ambientes terrestres que son sensibles al nitrógeno causando cambios de largo plazo. Por ejemplo, los óxidos de nitrógeno contienen una porción significativa de la acidez en la lluvia ácida que es la causante de la deforestación en partes de Europa y del Noreste de Estados Unidos. El aumento de depósitos de nitrógeno atmosférico también causa los cambios más sutiles en las especies dominantes y funciones del ecosistema en algunos bosques y prados. Por ejemplo, en los suelos serpentina con poco nitrógeno de los prados del Norte de California, los conjuntos de plantas se han limitado históricamente a las especies nativas que pueden sobrevivir sin mucho nitrógeno. En este momento, hay evidencia que los niveles elevados de entrada de N atmosférico proveniente del desarrollo industrial y agrícola, han allanado el camino para una invasión de plantas no nativas. Como se ha señalado con anterioridad, el NO es un factor esencial en la formación del smog, que también causa enfermedades respiratorias como el asma en niños y adultos.

Actualmente, hay muchas investigaciones dedicadas a entender los efectos del enriquecimiento del nitrógeno en el aire, en el agua del subsuelo, y en el agua en la superficie. Los científicos también están explorando prácticas agrícolas alternativas, que sostendrán una alta productividad, a la vez que disminuirán los impactos negativos causados por el uso de fertilizantes. Estos estudios no sólo nos ayudan a cuantificar cómo los humanos hemos alterado el mundo natural, sino también a aumentar nuestro conocimiento sobre los procesos que forman el ciclo del nitrógeno

lunes, 1 de marzo de 2010